Filter Pruning Without Damaging Networks Capacity
نویسندگان
چکیده
منابع مشابه
Structural Compression of Convolutional Neural Networks Based on Greedy Filter Pruning
Convolutional neural networks (CNNs) have state-of-the-art performance on many problems in machine vision. However, networks with superior performance often have millions of weights so that it is difficult or impossible to use CNNs on computationally limited devices or to humanly interpret them. A myriad of CNN compression approaches have been proposed and they involve pruning and compressing t...
متن کاملFinding Interesting Associations without Support Pruning
Association-rule mining has heretofore relied on the conditionof high support to do its work efficiently. In particular, the well-known a-priori algorithm is only effective when the only rules of interest are relationships that occur very frequently. However, there are a number of applications, such as data mining, identification of similar web documents, clustering, and collaborative filtering...
متن کاملAn Adaptive Self-adjusting Bandwidth Bandpass Filter without IIR Bias
In this paper we introduce a simple, computationally inxepentsive, adaptive recursive structure for enhancing bandpass signals highly corrupted by broad-band noise. This adaptive algorithm, enhancing input signals, enables us to estimate the center frequency and the bandwidth of the input signal. In addition, an important feature of the proposed structure is that the conventional bias existing ...
متن کاملAn Adaptive Self-adjusting Bandwidth Bandpass Filter without IIR Bias
In this paper we introduce a simple, computationally inxepentsive, adaptive recursive structure for enhancing bandpass signals highly corrupted by broad-band noise. This adaptive algorithm, enhancing input signals, enables us to estimate the center frequency and the bandwidth of the input signal. In addition, an important feature of the proposed structure is that the conventional bias existing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2993932